Spring 2014 \qquad

Quiz 2

Question 1. (10 pts)
Solve the following linear system

$$
\left\{\begin{array}{l}
2 x+8 y+4 z=2 \\
2 x+5 y+z=5 \\
4 x+10 y-z=1
\end{array}\right.
$$

Solution: Set up the augmented coefficient matrix

$$
\left[\begin{array}{ccc|c}
2 & 8 & 4 & 2 \\
2 & 5 & 1 & 5 \\
4 & 10 & -1 & 1
\end{array}\right]
$$

change it to its echelon form

$$
\left[\begin{array}{lll|c}
1 & 4 & 2 & 1 \\
0 & 1 & 1 & -1 \\
0 & 0 & 3 & 9
\end{array}\right]
$$

So

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
11 \\
-4 \\
3
\end{array}\right]
$$

is a solution.

Question 2. (5 pts)

Recall that a complex matrix is called unitary if $A A^{*}=I$, where $A^{*}=(\bar{A})^{T}$. Check whether $B=\left[\begin{array}{cc}\frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2}\end{array}\right]$ is unitary.

Solution: A direct calculation shows that $B B^{*}=I$, hence B is unitary.

Question 3. (5 pts)

Use the fact $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ to show that

$$
\operatorname{tr}\left(C A C^{-1}\right)=\operatorname{tr}(A)
$$

Here all matrices are square matrices and C is invertible.

Solution:

$$
\operatorname{tr}\left(C A C^{-1}\right)=\operatorname{tr}\left(C^{-1}(C A)\right)=\operatorname{tr}\left(\left(C^{-1} C\right) A\right)=\operatorname{tr}(I A)=\operatorname{tr}(A)
$$

